Uni i ${ }^{\text {B }}$ 写 Vocobulory and Big ldeas
a letter or symbol used to represent an unknown number or a quantitity that varies. Example: $y=2 x$ x and y are variables

a combination of one or more numbers, one or more variables, or both numbers and variables.
Has operations, but not equals sign.
Examples: $x-9$ 1/2bh $5 \cdot 2^{2}$

Part of an expression that is added or subtracted.

Example: $4,3 b$, and b^{2} are all terms of the expression

$$
\begin{gathered}
4+3 b+b^{2} \\
\mathbf{1}
\end{gathered}
$$

Terms

Cn expression that does not include variables, only numbers.

$$
36-(2+9) \cdot 3 \quad \text { OP } \quad 20-8 \div 2
$$

Order ol Operations: p : parenthesis E: Exponents
M/D: Multiply or Divide (left to right)
aIS: add or Subtract (left to right)

Expression:
An expression that includes
one or more variables.

Examples:

$$
10(a+b) \quad 7 n \quad 5 x^{2}-x
$$

Substitute for variables if

needed to solve an expression.
Evaluate 10(b*a)
when $b=3$ and $a=4$ $10(b+a)=10(3+4)=10 * 7=70$

Cn expression that includes an exponent and represents repeated multiplication.
The power is determined by the exponent.
4^{3} (read as "four to the third power")
means $4 * 4 * 4$
a number, variable, or expression that is raised to a power.

$$
4^{2}
$$

4 is the base in this example

In a power, the small, raised number that indicates how many times the base ils used as a factor.

3 is the exponent below

$$
4^{3}=4 \cdot 4 \cdot 4=64
$$

Substitutue values for the

variables in an expression and then simplify to find your answer.
Example:

10(bғa) when $b=3$ and $a=4$

$$
10(3+4)=10 * 7=70
$$

Expressions that always have the same value.
Example: $B \pm B \pm B=3 B$

$$
U \neq U \mp U \mp U \mp U=5 U
$$

Terms with the same variables raised to the same powers. Example:
$6+2 x+1+x$
6 and 1 are ℓ ike terms, $2 x$ and x are \&lke terms.

Perform operations and combine all like terms.

Example:

Simplify: $3 x+5 \pm x+2$.

$$
4 x+7
$$

*Work out the expression step by step.

Commuronive Proper
 Addinion:
The property that states that changing the order of factors does not change their answer.

Example:
$3 \div 4 \div 5=5 \mp 4+3$ or $4 * 8 * 2=2 * 4 * 8$

Associonive Property
of Multiplicerion or

Addition:

The property that states changing the grouping of factors does not change the product.
*Think Friends
$(9 * 15) * 20=9 *(15 * 20)$

The number of a Germ when the term is a number times a variable or a number times a product of varíables.
$5 x+2 x y$
5 is the coefficient of the term $5 x$ and 2 is the coefficient of the term $2 x y$

The property that allows us to distribute a factor to the other berms.

*Think football or a truck distributing soda.

$$
6(3+4)=6(3)+6(4)
$$

Greoresi Common FOCHO (GCP):

The greatest common factor that two numbers share.

Example:

15 is the GCF of 30 and 45

Double Number Line:
a diagram with two number lines that shows how to quantities relate to each other.

Example: The distance in miles and the time it takes. 1 mile takes 15 minutes.

In a relationship between two variables, the variable that depends on the value of the other.
Example: The cost of gas, c, depends on the number of gallons purchased
g. The cost, c, is the dependent variable.

Independen Vorioble: In a relationship between two varíables, the variable whose values influence the values of the other variable.
Example: The cost of gas, c, depends on the number of gallons purchased g . The number of gaflons purchased, g is the independent variable.
a statuement comparing tiwo expressions using greater than, less than, greater than or equall to, less than or eqqual to, or not eqqual to.

$$
><\geq \leq \neq
$$

$$
4+7>10
$$

Greater than any whole number; the number of solutions is unlimited.
Example:
$x>3$ has an infinitue number of solutions.

Operations that undo each other. addition and subtraction are inverse operations. Multiplication and division are inverse operations.
Example: $5+9=14$, so $14=9=5$

Hpyerse:
The product of a number and
itts mu\&tiplicative inverse is one.
6 is the multiplicative inverse of $\frac{1}{6}$

$$
6 \cdot \frac{1}{6}=1
$$

